MD 202 at Kilmer Street Intersection Safety Study

Cheverly, Maryland

Prepared for: Sabra Wang & Associates

Prepared by:

2417 Ogden Square Gambrills, MD 21054

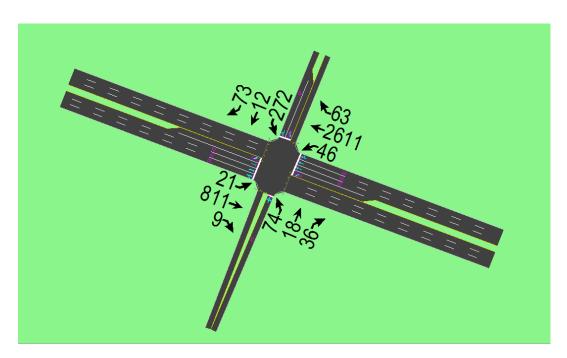
July 2009

TABLE OF CONTENTS

		<u>Page</u>
I. MD 20 IMPROVEMI	02 AT KILMER STREET OPERATIONAL AND SAFETY ENTS	1
FIGURES		
Figure 1.	MD 202 at Kilmer Street Peak Hour Volumes	3
Figure 2.	MD 202 at Kilmer Street Aerial Photo	7
TABLES		
Table 1.	Summary of Existing Capacity Analysis	5
Table 2.	Summary of Crash Analysis	6
APPENDICES	<u>S</u>	
Appendix A.	Crash Report	
Appendix B	Highway Capacity Analysis Worksheets	

The Town of Cheverly is located in Prince George's County Maryland approximately 2 miles from the Washington, DC line. The BWI Parkway, US 50, and MD 202 provide access to Cheverly, and the WMATA orange metro line has a transit station in Cheverly. The goal of the Town of Cheverly Non-Motorized Transportation Study is to improve safety and accessibility for pedestrians and bicycles in the Town. Major points of interest for bicycle and pedestrian connections include the Anacostia River Trail, Cheverly Metro Station, Prince George's County Hospital Center, retail and commercial businesses along MD 202, multi-family residential units along MD 202, schools, and other recreational areas such as Euclid Park and Beaverdam Creek.

In support of the overall Non-Motorized Transportation Study, Vision Engineering and Planning was requested to conduct a safety and operational analysis at the intersection of MD 202 at Kilmer Street.


The intersection of MD 202 at Kilmer Street is located within walking distance of both schools. There are a number of retail establishments and multi-family housing units near the intersection which generate significant amounts of foot traffic at the intersection. As a part of the streetscape project, new, textured crosswalks were installed along with signage that discourages mid block crossings.

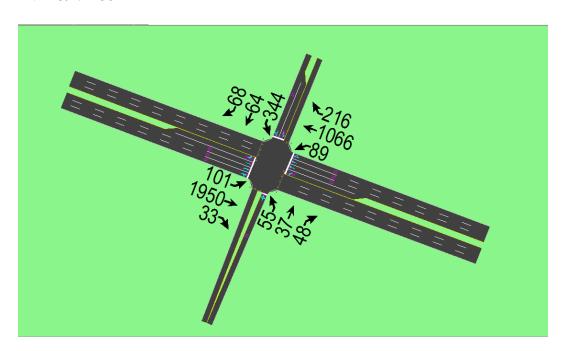

Existing MSHA peak hour turning movement counts collected in November, 2006 were used in the existing conditions analysis. The counts were collected at the study intersection from 6:00 AM to 7:00 PM. **Figure 1** summarizes the existing peak hour traffic volumes. The count data indicates that the existing peak hours occur from 7:00 AM to 8:00 AM and 5:00 PM to 6:00 PM.

Figure 1-Existing AM and PM Peak Hour Volumes

AM Peak Hour

PM Peak Hour

Existing Intersection Capacity and Level of Service

The methodology of the Highway Capacity Manual (HCM) was used to evaluate capacity for the study intersection during the AM and PM peak hours. A Synchro traffic model was developed and coded for each peak hour with the existing conditions data including roadway geometry, traffic volumes, pedestrian volumes and signal timing and phasing data as inventoried and documented in the field or as provided by Maryland SHA. The existing SHA counts were factored to the year 2009 using an annual growth factor of 2%, which was based on historical count data trends near the intersection.

Performance measures of effectiveness for HCM analysis include level of service, delay, and volume-to-capacity (v/c) ratio. The level of service (LOS) is a letter designation that corresponds to a certain range of roadway operating conditions and F indicating the worst, or failing, operating condition. The v/c ratio is the ratio of the current flow rate to the capacity of the intersection. This ratio is often used to determine how sufficient capacity is on a given roadway. Generally speaking, a ratio of 1.0 indicates that the roadway is operating at capacity. A ratio of greater than 1.0 indicates that the facility is failing as the number of vehicles exceeds the roadway capacity.

The results of the existing conditions capacity analysis are summarized in the following table; detailed HCM worksheets are included in **Appendix B.**

Table 1 - Summary of Existing Capacity Analysis; AM (PM)

Intersection	AM LOS	AM v/c	PM LOS	PM v/c
MD 202 at Kilmer Street	D	0.98	С	0.87

The results of the existing conditions capacity analysis indicate that the intersection is currently operating at a LOS D during the AM peak hour a LOS C during the PM peak hour with a volume to capacity ratio near 1 during the AM peak hour. This volume to capacity ratio is consistent with field observations which indicated queuing conditions beyond the US 50 ramp in the westbound direction of MD 202 during the AM peak hour.

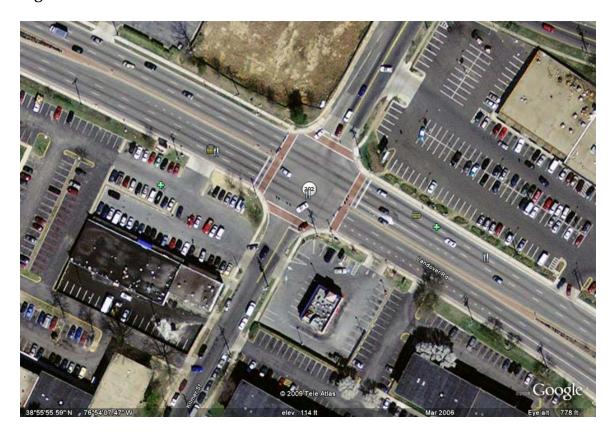
Crash Analysis

In addition to the operational analysis, a crash analysis was conducted at the intersection to identify crash patterns and develop countermeasures to reduce the number of crashes at the study intersection. Particular attention was given to crashes involving pedestrians and/or bicyclists. The most recent four years of

crash data (2005, 2006, 2007, 2008) was provided by the Maryland State Highway Administration (MSHA).

Table 2 - Summary of Existing Crash Analysis

	Pedestrian	Angle	Left Turn	Rear End	Sideswipe	Fixed Object	Other
Number of Crashes	2	5	6	14	1	1	3


The results of the crash analysis indicate that there were a total of 31 crashes at the study intersection, including 14 rear end collisions, 6 left turn collisions, 5 angle collisions, and 2 crashes involving pedestrians. Thirteen of the crashes occurred at night, six occurred in wet conditions, thirteen crashes had injuries associated with them, and there was one fatality in 2008. Though rear end collisions are typically associated with less property damage and injuries than angle collisions, the one fatality at the intersection was associated with a rear end collision. While the pedestrian crashes did not result in a fatality, minimizing, if not eliminating pedestrian collisions at this intersection is one of the goals of the study.

MD 202 at Kilmer Road was identified by the Town of Cheverly as a candidate for a safety improvement study. The intersection is located near numerous multi-family housing units, retail and commercial establishments. This particular land use form leads to significant pedestrian demand which poses additional operational and safety issues at the subject intersection. MD 202 is a six lane, urban arterial with a posted speed limit of 35 mph in the study area. Kilmer Street is a local street that serves residential neighborhoods to the south of MD 202 as well as Spellman Elementary School. Notable characteristics of the study intersection include:

- The intersection is located immediately adjacent to the US 50 off ramp. The westbound US 50 off ramp carries traffic at high speeds and limited visibility when approaching the study intersection
- Textured crosswalks are present at all of the approaches; these crosswalks were part of the MD 202 streetscaping project
- New sidewalks are located on MD 202; these sidewalks were also installed as part of the streetscape project and include an approximately 6" setback from the travel lane, providing for increased pedestrian safety
- The pavement and signs are in good condition

- The adjacent land uses are primarily multi-family residential, retail, and commercial
- Bus stops are located on the east and west side of Kilmer Street
- The traffic signal at the intersection is currently being upgraded with new signal and pedestrian heads, poles, and controller

Figure 14-MD 202 at Kilmer Street

A Professional Traffic Operation Engineer observed traffic conditions during both peak and off-peak hours, specifically focusing on driver behavior, traffic and pedestrian patterns, geometry, and overall traffic operations. The following summarizes the observations:

• Mid-block pedestrian crossings east of Kilmer Street are unsafe due to the high speeds on MD 202 and the off ramp from US 50

- Mid-block pedestrian crossings occur south of MD 202 on Kilmer Street despite the presence of crosswalks nearby
- There are no sidewalks on the west side of Kilmer Street west of MD 202
- The existing protected/permitted left turn phasing on MD 202 requires turning vehicles to travel across three lanes of traffic traveling at speeds over 40 mph

Based on the analysis presented in the report, the suggested changes or improvements are summarized below.

- Install pedestrian barriers on MD 202 as previously recommended in the SRTS Plan
 - o Advantages-eliminates mid-block pedestrian crossings
 - Disadvantages-cost of installation
- Expand education strategies from the SRTS plan to the surrounding neighborhoods to discourage mid-block pedestrian crossings
 - Advantages-could reduce mid-block crossings
 - o Disadvantages-limited effectiveness without enforcement
- Install sidewalks on the west side of Kilmer Street north of MD 202
 - o Advantages-improves pedestrian safety at intersection
 - Disadvantages-cost of installation
- Install pedestrian facilities and re-orient pedestrian traffic in the retail area located at the northeast corner of the intersection
 - o Advantages-improves pedestrian safety in retail area and intersection
 - o Disadvantages-cost of installation; coordination with private landowners required
- Change protected/permissive left turn phasing on MD 202 to protected left turn phasing
 - o Advantages-reduces angle and left turn collisions
 - o Disadvantages-potential for added intersection delay
- Install rumble strips and speed advisory on westbound US 50 off ramp
 - o Advantages-reduces speeds on US 50 off ramp
 - o Disadvantages-cost of installation; noise impacts

Appendix A

Crash Report

Maryland State Highway Administration
Office of Traffic and Safety - Traffic Development and Support Division
. SHA 52.1 ADC Study Worksheet Output rev. 06/2006-1

Name: Dennis McMullen Date: 06/18/2009

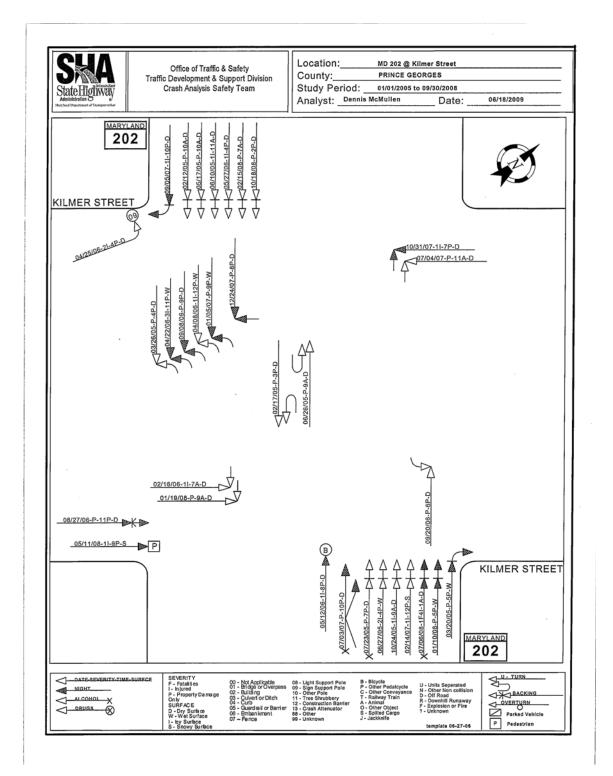
Location: MD 202 @ KILMER STREET

Logmile: 012.59 At 000.06 Radius: 150 ft

County: Prince George's Period: Jan. 1, 2005 To approx. Sept. 30, 2008 Note(s): 2008 DATA IS UNEDITED

	2005	2006	2007	2008	TOTAL	
FATAL				1	1	
No. KILLED				1	1	
INJURY	3		3	1	13	
No. INJURED	4	9	3	5	21	
PROP DAMAGE	7	3	4		18	
TOTAL ACC	10	9	7	6	32	
OPPOSITE DIR	_					
KEAK END	7	1	2	4		
SIDESWIPE			1		1	
LEFT_TURN	1	4	1			
ANGLE		1	3	1	5	
PEDESTRIAN		1		1	2	
PARKED VEH						
FIXED OBJECT		1			1	
OTHER	2	1			3	
U-TURN	2				2	
BACKING		1			1	
ANIMAL						
RAILROAD						
EXPL./FIRE						
OVERTURN						
OTHER/UNK						
orman one						
TRCK REL ACC	1				1	
NIGHTTIME	1	4	5	3	13	
WET_SURFACE	2	2	1	1	6	
ALCOHOL REL	1		1	1	3	
INTERSEC REL	10	9	7	6	32	
	20	18	15	14	67	
					1	
TOTAL VEH	1					

Maryland State Highway Administration Office of Traffic and Safety - Traffic Development and Support Division SHA 52.1 ADC Combined Summary Output rev. 06/2006-1


Name: Dennis McMullen Date: 06/18/2009

Location: MD 202 @ KILMER STREET

Logmile: 012.59 At 000.06 Radius: 150 ft

County: Prince George's Period: Jan. 1, 2005 To approx. Sept. 30, 2008 Note(s): 2008 DATA IS UNEDITED

SEVERI	ITY	Fatal	Injury	P-D	amage	To	tal		1				DAY	OF T	THE WEE	K			
Accide	ents	1	13		18		32		i	SU	IN I	MON	TUE	WED	THU	F	RI S	AΤ	1
Veh Oc	cc	1	19						Ì		5	3	3	5	3		5	8	
Pedest	trian		2					ŀ	ļ										₩
MONTH	OF THE YEAR														COND	ITION	DRIV	BR.	
JAN	FEB MA	R AP	R MAY	JUI	ı J	UL	AUG	SEP	00	CT	NOV	DEC	UNK	i	Norm	al:	:	20	
3	5	2	3 4		3	4	1	3		3		1		i	ALCO	HOL:		3	
														i	Othe			9	
TIME	12 01 0:	2 03	04 0	5 06	07	08	09	10	11 U	nk		v	EHICLES	INVO	LVED P	ER ACC	CIDENT		_
AM:	1				2		3	2	2	i		1 :	2 3		4	5	6+ UI	ik i	o
PM:	2	1 1	4	2 1	2	2	3	2	2	İ	:	2 20	5 3		1				
	VEHIC	CLE TYP	E		i s	URFACI	в І						MOVEM	ENTS					_
	M Cycle/Mope	à	Trk Tra	iler	i	6 WET	i		NORTH	ī		SOUTE	H		EAST			WEST	c
39	Passenger Vel	n 1	Passeng		. 2	4 DRY	i	LF	ST	RT	LF	ST	RT	LF	ST	RT	LF	ST	
9	Light Truck		School			2 SNO,	/ICE	5	20	1	1	22	1	1	4	i		3	
	Heavy Truck	1	Emergen	cy Veh		MUD	į.						. .						
	Other Types					OTH	ER					OTHER	MOVEMEN	NTS 9					
PROBAB	BLE CAUSES									COLL	ISION	TYPES			FAT	INJ	PROP	т	o
	Inf. of Drugs	3		1	mprop	er Par	rking			OPPO	SITE I	DIR	RELATE):					
2	Inf. of Alcoh	nol		F	assen	ger In	nterfe	re/Obs	str.	UNRELATED:									
	Inf. of Medic	cation					n Road			REAR	END		RELATE		1	6	7		_
	Inf. of Combi	ned Sub	stance	Е	icycl	e Viol	lation	-		i		Už	RELATE):					
1	Physical/Ment	al Diff	iculty	c	lothi	ng not	. Visi	ble		SIDESWIPE RELATED:							1		_
	Fell Asleep/H	ainted	etc.	s	mog,	Smoke				i		UN	RELATE):					
21	Fail to give	full at	tent.	S	leet,	Hail,	Frz.	Rain		LEFT TURN RELATED:						2	4		_
	Lic. Restr. N	on-comp	oly	В	lowin	g Sand	i, Soi	l, Dir	rt	UNRELATED: ANGLE RELATED:									
5	Fail to Yield	Righto	fway	S	evere	Cross	winds									2	3		Π
	Fail to Obey	Stop Si	gn	R	ain,	Snow				Ĺ		UN	RELATE):					
	Fail to Obey	Traffic	Sig	A	nimal					PEDESTRIAN RELATED: UNRELATED:						2			
	Fail to Obey	Other C	Contr.	v	ision	Obstr	ruction	n											
	Fail to Keep	Right o	of Ctr	v	ehicl	e Defe	ect			PARK	ED VEH		RELATED	:					
	Fail to Stop	for Sch	. Bus	W	et							UN	RELATED):					_
	Wrong Way on	One Way	<i>r</i>	I	cy or	Snow	Cover	ed		OTHER	R CT		RELATED):			3		
	Exceeded Spee	d Limit		D	ebris	or Ob	struct	tion		L		UN	RELATED	:					_
1 '	Too Fast for	Conditi	ons	R	uts, 1	Holes,	Bumps	S		F B	RIDGE		0	1					
	Followed too	Closely		R	oad U	nder C	Constru	uction	1	I L Bt	JILDIN	IG	0	2					
	Improper Turn			T	raffi	c Cntr	l Devi	ice In	op.	X Ct	JLVERT	/DITCH		3					
	Improper Lane	Change		S	houlde	ers Lo	w, Soi	Et, Hi	.gh	E Ct	JRB		0	4					_
	Improper Back	ing								D Gt	JARDRA	IL/BAR	RIER 0	5					_
	Improper Pass	-		2 0	ther o	or Unk	mown				IBANKM	ENT		6					_
	Improper Sign	al								OF	ENCE		0	7					_
										B L	GHT P	OLE	0	8					_
WEA:	THER	ILLU	MINATION	1	1	TOTAL	s			JLSI	GN PO	ST	0	9		1			_
24	CLEAR/CLDY	19 D	AY		-					ELOT	THER P	OLE	1	0					_
1	FOGGY	D	AWN/DUSK	:	:	2005	10			CLT	REE/SH	RUBBER	Y 1	1					
7 1	RAINING	12 D	ARK - LI	GHTS O	N 2	2006	9			T C	NSTR.	BARRI	ER 1	2					_
1 8	SNOW/SLEET	1 D	ARK - NO	LIGHT	s 2	2007	7			SCE	RASH A	TTENUA	TOR 1	3					
	OTHER		THER			8008	6			l oi									

Appendix B

Highway Capacity Analysis Worksheets

	٠	-	•	1	←	•	1	1	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	ተተጉ		7	1	1955-1	12,100	4		7	7	
Volume (vph)	20	780	9	44	2511	61	71	17	35	262	12	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	6.0		5.0	6.0			6.0		6.0	6.0	
Lane Util. Factor	1.00	0.91		1.00	0.91			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00			0.96		1.00	0.87	
Flt Protected	0.95	1.00		0.95	1.00			0.97		0.95	1.00	
Satd. Flow (prot)	1770	5075		1769	5065			1732		1765	1607	
Flt Permitted	0.07	1.00		0.27	1.00			0.77		0.67	1.00	
Satd. Flow (perm)	139	5075		494	5065			1375		1247	1607	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%
Adj. Flow (vph)	23	882	10	50	2839	69	80	19	40	296	14	79
RTOR Reduction (vph)	0	1	0	0	2	0	0	14	0	0	59	0
Lane Group Flow (vph)	23	891	0	50	2906	0	0	125	0	296	34	0
Confl. Peds. (#/hr)	1		4	4		1	1		3	3		1
Bus Blockages (#/hr)	0	0	6	0	0	5	0	0	0	0	0	0
Turn Type	pm+pt			pm+pt			Perm		-	Perm	-	
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6			2			4			8		
Actuated Green, G (s)	56.1	53.5		61.9	56.4			26.0		26.0	26.0	
Effective Green, g (s)	56.1	53.5		61.9	56.4			26.0		26.0	26.0	
Actuated g/C Ratio	0.55	0.52		0.61	0.55			0.25		0.25	0.25	
Clearance Time (s)	5.0	6.0		5.0	6.0			6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	118	2662		369	2801			350		318	410	
v/s Ratio Prot	0.00	0.18		c0.01	c0.57						0.02	
v/s Ratio Perm	0.10			0.08				0.09		c0.24		
v/c Ratio	0.19	0.33		0.14	1.04			0.36		0.93	0.08	
Uniform Delay, d1	22.6	14.0		8.4	22.8			31.1		37.1	28.9	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	0.8	0.3		0.2	27.7			0.6		32.9	0.1	
Delay (s)	23.4	14.3		8.6	50.5			31.8		70.0	29.0	
Level of Service	C	В		A	D			C		Е	C	
Approach Delay (s)		14.6			49.8			31.8		-	60.2	
Approach LOS		В			D			C			E	
Intersection Summary												
HCM Average Control Dela	v		42.8	Н	CM Leve	of Service	ne e		D			
HCM Volume to Capacity ra			0.98	- 11	ON LOVE	O OOI VIC	~		U			
Actuated Cycle Length (s)	auo		102.0	Q	um of los	t time (e)			17.0			
Intersection Capacity Utiliza	ation		83.7%		CU Level				17.0 E			
Analysis Period (min)	AUOII		15	10	JO LEVEL	or oer vice						
c Critical Lane Group			10									

Baseline Synchro 7 - Report Wuser_name% Page 1

Existing AM Peak Hour

	•	→	*	1	←	•	1	†	~	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተኩ		7	444	100-11		4		ሻ	7	
Volume (vph)	97	1875	32	86	1025	208	53	36	46	331	62	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	6.0		5.0	6.0			6.0		6.0	6.0	
Lane Util. Factor	1.00	0.91		1.00	0.91			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		0.99	1.00	
Frt	1.00	1.00		1.00	0.97			0.95		1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00			0.98		0.95	1.00	
Satd. Flow (prot)	1769	5070		1770	4933			1723		1751	1703	
Flt Permitted	0.12	1.00		0.08	1.00			0.83		0.64	1.00	
Satd. Flow (perm)	228	5070		156	4933			1450		1188	1703	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%
Adj. Flow (vph)	110	2120	36	97	1159	235	60	41	52	374	70	73
RTOR Reduction (vph)	0	2	0	0	29	0	0	18	0	0	37	0
Lane Group Flow (vph)	110	2154	0	97	1365	0	0	135	0	374	106	0
Confl. Peds. (#/hr)	4		3	3		4	7		13	13	1000000	7
Bus Blockages (#/hr)	0	0	6	0	0	5	0	0	0	0	0	0
Turn Type	pm+pt			pm+pt			Perm			Perm		
Protected Phases	1	6		5	2		1,000,000	4		WATER ST	8	
Permitted Phases	6			2			4			8		
Actuated Green, G (s)	57.4	49.3		54.6	47.9		- 25	27.0		27.0	27.0	
Effective Green, g (s)	57.4	49.3		54.6	47.9			27.0		27.0	27.0	
Actuated g/C Ratio	0.57	0.49		0.55	0.48			0.27		0.27	0.27	
Clearance Time (s)	5.0	6.0		5.0	6.0			6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	256	2500		193	2363			392		321	460	
v/s Ratio Prot	c0.03	c0.42		0.03	0.28			002		021	0.06	
v/s Ratio Perm	0.21	00.12		0.24	0.20			0.09		c0.31	0.00	
v/c Ratio	0.43	0.86		0.50	0.58			0.34		1.17	0.23	
Uniform Delay, d1	11.6	22.3		17.4	18.8			29.4		36.5	28.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	1.2	4.2		2.1	1.0			0.5		102.9	0.3	
Delay (s)	12.7	26.6		19.5	19.8			29.9		139.4	28.7	
Level of Service	В	C		В	В			C		F	C	
Approach Delay (s)		25.9			19.8			29.9			108.8	
Approach LOS		C			В			C			F	
Intersection Summary												
HCM Average Control Dela	v		33.6	Н	CM Leve	of Service	e		С			
HCM Volume to Capacity ra			0.87		2010	J. 50, 11						
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			11.0			
Intersection Capacity Utiliza	tion		95.7%		U Level				F			
Analysis Period (min)			15	10					•			
c Critical Lane Group			10									

Baseline Synchro 7 - Report Wuser_name% Page 1

Existing PM Peak Hour